978-1-5386-7013-2/18/$31.00 ©2018 IEEE
DOI 10.1109/ACSD.2018.000-4

2018 18th International Conference on Application of Concurrency to System Design

SOUPS: A Variable Ordering Metric for the
Saturation Algorithm

Benjamin Smith

Gianfranco Ciardo

Department of Computer Science, Iowa State University
Ames, IA 50011, USA
{bensmith @iastate.edu, ciardo@iastate.edu}

Abstract—Multivalued decision diagrams are an excellent tech-
nique to study the behavior of discrete-state systems such as Petri
nets, but their variable order (mapping places to MDD levels)
greatly affects efficiency, and finding an optimal order even just
to encode a given set is NP-hard. In state-space generation, the
situation is even worse, since the set of markings to be encoded
keeps evolving and is known only at the end.

Previous heuristics to improve the efficiency of the saturation
algorithm often used in state-space generation seek a variable
order minimizing a simple function of the Petri net, such as the
sum over each transition of the top variable position (SOT) or
variable span (SOS). This, too, is NP-hard, so we cannot compute
orders that minimize SOT or SOS in most cases but, even if we
could, it would have limited effectiveness. For example, SOT and
SOS can be led astray by multiple copies of a transition (giving
more weight to it), or transitions with equal inputs and outputs
(giving weight to transitions that should be ignored).

These anomalies inspired us to define SOUPS, a new heuristic
that only takes into account the unique and productive portion
of each transition. The SOUPS metric can be easily computed,
allowing us to use it in standard search techniques like simulated
annealing to find good orders.

Experiments show that SOUPS is a much better proxy for the
quantities we really hope to improve, the memory and time for
MDD manipulation during state-space generation.

I. INTRODUCTION

The saturation algorithm in its various forms represents the
state of the art mechanism to generate the reachable state space
for a system. Given a set of variables, the saturation algorithm
requires an order for those variables prior to execution. Even
for simple systems the choice of order can lead to dramatic
differences in time and memory, and in the worst cases often
stretches beyond the capacity of our machines and patience.

Numerous algorithms producing orders for use by saturation
have been moderately successful in some but not all cases.
Usually, these algorithms stem from those used for graph
layout problems and do not take into account the special
circumstances found using saturation. Whereas these graph
layout problems of interest are NP-complete, it is unwise
to spend computation optimizing them when they so often
disagree with results in practice. We present a metric approach
for comparing orders, with the goal of efficiently estimating
which order will offer lower computation cost using saturation.
The metric can be applied to any order making it possible to
choose between orders derived from any source or algorithm.
Further, the metric’s efficient computation allows it to serve
as the objective function for any heuristic search algorithm.

State of the art implementations of saturation use many tech-
niques to improve performance, making it difficult to compare
tools and further complicating our primary goal of tackling the
ordering problem. We aim to make our findings repeatable, and
as applicable as possible. To this end, we make available an
implementation of saturation with minimal divergence from its
modern incarnation [7]. The results presented demonstrating
that our ordering metric correlates with saturation cost can
be independently verified, and similar results can be expected
when used with most implementations.

The rest of this paper is organized as follows. Section II
summarizes the saturation algorithm, its use of decision di-
agrams, how we measure performance, and how variable
ordering can improve results. Section III defines the SOUPS
metric, explains how it relates to the reduction of costly
operations performed by saturation, and includes a short
proof that SOUPS is NP-hard. Section [V explains an efficient
approach to calculate the SOUPS metric, and how it can be
applied to searching. Section V presents experimental results
demonstrating that SOUPS correlates with saturation cost, and
that SOUPS is a more reliable metric. Section VI summarizes
our findings.

II. BACKGROUND

This section recalls key concepts about Petri nets, decision
diagrams, the saturation algorithm, and variable ordering.

A. Petri nets

A Petri net is a tuple (P, T, F~,F* m™¥), where P and
T are sets of places and transitions, with P N7 = () and
PUT #0,F:PxT — Nand FT:PxT — N are incidence
matrices specifying the cardinalities of the input and output
arcs between p and ¢, and m"* € N7 is the initial marking
(a marking assigns a number of fokens m,, to each p € P).

The dynamics of the net are governed by the enabling rule
(transition ¢ is enabled in marking m if, for each place p, the
input arc is satisfied, m, > F ;) and by the firing rule (tran-
sition ¢ enabled in marking m may fire, leading to marking n,
where, for each place p, n, = m,, — F; + F; .). For general
discrete-state formalisms, the next-state function N; for event
t returns a set of states when applied to a single state m, thus
we write N;(m) = {n}, so that AV;(m) = () means that ¢
is not enabled in marking m. We let N = | J,.+NV; be the

IEEE
computer
® psoaety



overall next-state function, and extend our notation to sets of
markings X, i.e., N(X) ={n:3m € X,n € N(m)}.

The reachability set describes the markings reachable
from m" through firing sequences, Sycacr, = {m™*} U
N (@™ UN (N (mi))U- - - = N* (m*™?), and we consider
only the case where it is finite, which implies that the number
of tokens in each place p is bounded by some value b,,.

B. Ordered multi-valued decision diagrams

An L-level MDD [12] over a finite set S = S; X --- X Sp,
is an acyclic directed edge-labeled level graph with terminal
nodes 0 and 1, at level 0, while each nonterminal node p is at
some level p.lvl = k € {1,..., L}, and, for i}, € S, has an
outgoing edge labeled with i and pointing to a child p[ix] at
level pli].lvl < k (this is to enforce the “ordered” property).
Without loss of generality, we can assume that each Sy is of
the form {0.,..., b}, for some b € N.

MDD node p at level k encodes function f, : S — B,
recursively defined by f, (1, ...,i1) = fo[i,) (i1, - - -, 4L), with
base case f,(i1,...,%ir) = p when k = 0. Interpreting f,, as
an indicator function, p encodes set X, = {i : f,(i) = 1} C
S. To encode relations over S, we use 2L-level MDDs over
(S1 x 81) x -+ x (S, x St), where the first set in each pair
corresponds to a “from”, or “unprimed”, local state and the
second set corresponds to a “t0o”, or “primed”, local state.

We also say that Si, for 1 < k < L, describes the possible
values of domain variable xj, so an MDD maps x1,...,2
to the range variable x¢, taking values over Sy = {0, 1}. The
variable order used to match the L domain variables to the
L levels may greatly affect the size of the MDD encoding a
given function, and finding an optimal order is NP-hard [4].

MDDs are canonical, i.e., the MDD encoding a given
function f with a particular variable order is unique, if we
forbid duplicate nodes (there cannot be distinct nodes p and ¢
with p.lvl = g.lvl = k and plix] = ¢[ix] for all i), € Sy) and
either eliminate all redundant nodes (a node p must have at
least two distinct children) so that edges skip as many levels
of don’t care variables as possible, or we keep all redundant
nodes, so that no edge skips levels. The two resulting canonical
forms are called fully-reduced and quasi-reduced, respectively.

When encoding relations, we employ a third canonical form,
Sfully-identity-reduced [7], where unprimed levels are fully-
reduced but primed levels are identity-reduced, meaning that
the semantic of an edge skipping over a primed level &’ is
that the value of z), is the same as that of x. This form can
result in much more compact encoding of next-state functions
if events depend and affect only on a small subset of state
variables, as is the case for most transitions in a Petri net,
since their enabling depends only on the input places and their
firing changes only the input and output places.

Figure 1 shows examples of these reduction forms assuming
Sk = {0,1,2} and omitting edges going to terminal node 0.
In the left panel, we see how the redundant node at level k is
present in the quasi-reduced form but not in the fully-reduced
form. In the center panel, the singular node at level k' is
pointed to by two edges from the node at level k£ when both

Quasi Full Full-Full Full-Id Full-Full Full-Id

r+1[2]5]6] [2[5]6]

L-Tevel MDDs.

k1 [1]s] [1l8] [e1[al3] [1]3]
Fig. I. Reduction rules on L-Ievel and

unprimed and primed levels are fully-reduced, but only by the
0-edge when primed levels are identity-reduced. In the right
panel, all nodes at level k£’ are eliminated if primed levels are
identity-reduced, and this in turn makes the node at level k
redundant (all its edges now point to the node at level k& — 1),
so is itself eliminated since unprimed levels are fully-reduced.
This identity pattern describes the common situation where xy,
neither affects the enabling of the transition encoded by the
2L-level MDD, nor it is affected by its firing, and is key to
recognizing locality in the MDD encoding a transition relation.

C. The saturation algorithm

Given a Petri net with |P| = L, we can map its places to
the variables of an L-level MDD and build an initial MDD
encoding the set Xy = {m;,;;} as well as an MDD encoding
N, for each t € T. Then, we can symbolically generate
Xyeacrn, by building the MDD encoding N, i.e., computing
the union of the MDDs encoding the relations N}, and then
computing the sequence of assignments X, 1 < X, UN(X,,),
each of them requiring a union and a relational product,
until we reach a fixpoint. This is possible only if all places
are bounded, but we do not need to know their bounds a
priori, we can instead incrementally build N; (and update
N) on the fly[6]. We do not even need to build A/, we can
instead apply each N; at each iteration, and this often is more
efficient because the MDD encoding each N; is usually small
if fully-identity-reduced, while the MDD encoding the overall
N might explode in size. However, the fundamental problem
of this simple approach is its breadth-first flavor: X,, contains
exactly all reachable markings at distance up to n from m;,,;¢,
and the MDD encoding this set is often huge even if the MDD
encoding the fixpoint X,..,., might not be. This is a well-
known problem: the peak MDD size is the critical factor for
memory (and time) performance, not the final MDD size.

The saturation algorithm [5] attempts to reduce peak MDD
size through chaotic-style nested iterations. When N is en-
coded with a fully-identity-reduced MDD, we can easily
determine the levels Top(t) and Bot(t) enclosing variables
affected by or affecting transition ¢, so that all variables above
Top(t) or below Bot(t) are neither changed by firing ¢, nor
they can disable it. Then, saturation repeatedly applies the
next-state functions N; starting from the ones with the lowest
Top, and immediately applying lower ones whenever new
lower MDD nodes are created. An MDD node at level k is
said to be saturated if it encodes a fixpoint with respect to
all Ny with Top(t) < k, and the fundamental property of
the saturation algorithm is that all descendant nodes from the
node being saturated are guaranteed to be saturated already.
Experimental results have shown that saturation can have peak



memory consumption and runtimes thousands of times smaller
than breadth-first, so it is now the preferred algorithm for
MDD-based state-space generation of discrete-state models
having asynchronous events.

The size of the MDD encoding X4 is obviously a lower
bound on the size of the peak MDD for saturation.

D. Measuring the cost of a saturation run

Without assuming specific implementation details, the basic
operations needed by saturation are creation of nodes, cache
lookups, and computing unions and relational products. Both
time and memory are critical when generating a large reach-
ability set but, with MDDs, the two are usually tightly corre-
lated in the sense that the number of nodes being manipulated
determines both the storage and the runtime requirements'.

Each call to saturation, firing, and union creates a node, so
node creation is a reliable and countable indicator of overall
work being done. Every node created during execution must be
checked into the unique table. Previous work often seeks to use
“peak nodes” during a saturation run as a measure of memory
usage, the motivation for this being that the computation will
in principle fail if it needs to store more nodes than can fit
in the computer’s memory. In practice, though, the implemen-
tation resorts to some form of garbage collection to delete
disconnected nodes. The two extreme approaches are then to
store every node created indefinitely i.e., never run garbage
collection, or to delete every node as soon as it becomes
disconnected. The latter “pessimistic” approach leads to the
smallest peak size but has terrible performance in practice,
not just because of its high garbage collection overhead, but
also because deleted nodes may have to be recreated later, if
a different path in the MDD needs to encode the same set of
submarkings. The former “optimistic” approach of preserving
all created nodes leads to the highest peak size but is closer
to most implementations, which try to avoid recomputations
and maximize cache hits as much as possible; it also results
in the best runtime, as long as its memory requirements are
not excessive. We choose to track the number of MDD nodes
actually inserted in the unique table: if no garbage collection
is ever invoked, this is exactly the number achieved with the
optimistic approach; otherwise, it is an upper bound on that
number, since a node may be created and inserted in the unique
table, then become disconnected and deleted by a garbage
collection pass, then created and inserted again later.

E. Variable ordering heuristics

Strategies for coping with the variable ordering problem
include searching the space of orders to improve a metric,

I'We observe that, unlike BDDs where each node has exactly two edges,
MDDs are best stored in some sparse format where only edges not pointing
to terminal O occupy memory, so that a node at level k£ may have to store up
to |Sk| of them. The number of edges is thus a more accurate measure of
MDD memory usage than the number of nodes, but in practice we can simply
track the latter, as long as the individual domains Sy are reasonably small.
More importantly, we focus on the effect of different variable orders on the
time and memory requirements when running saturation on a given model,
and the ratio of edges to nodes is quite consistent for these experiments.

or using a specialized polynomial algorithm to produce an
order. While we employ the searching approach, existing
polynomial algorithms often produce results good enough to
solve many problems. When these algorithms fail to produce
orders that allow saturation to complete, the only alternative is
to adjust their parameters and try saturation again, essentially
performing a search limited by the flexibility of the algorithm.
With a sufficiently accurate metric, the metric can serve as a
substitute for running saturation, saving time.

Most successful polynomial algorithms were conceived for
different problems. The FORCE algorithm was intended as a
simpler alternative to algorithms reducing the size of BDDs,
and is defined for SAT problems [3]. The idea of obtaining a
layout by assigning forces to movable components has appli-
cations in diverse settings, and more flexible approaches have
been around even longer [10]. This flexibility is necessary, as
we will explore factors in addition to keeping connected places
as close as possible. The Cuthill-Mckee [8] and Sloan[19]
algorithms target permutations to improve numerical com-
putations with sparse matrices. Other than Noack[15], most
polynomial algorithms target problems only loosely related to
Petri net variable ordering [9][17]. The general graph layout
problem fails to consider several performance-critical phenom-
ena exploited by saturation, and observing when these occur
can improve these polynomial algorithms.

The variable order affects the cost of saturation in several
ways. Saturation benefits if a transition ¢ to be fired has a
low Top(t), since a larger portion of the decision diagram
above Top(t) remains unchanged. It also benefits if the range
from Top(t) to Bot(t) is narrow, since no relational product
is performed on nodes at levels below Bot(t). These two
observations lead to the development of the first heuristics
for variable order specifically targeted toward saturation [18],
attempting to find an order that minimizes the “sum-of-
tops” (SOT), »_,.s Top(t), or the “sum-of-spans” (SOS),
> 7 Top(t) — Bot(t) + 1, respectively. Unfortunately, both
computations have been shown to be NP-hard, so in practice
one can only hope to find orders with “low” SOT or SOS.

Of course, any good implementation of the saturation algo-
rithm employs caches for saturation, firing, and union opera-
tions, but this further complicates an a priori assessment of the
actual cost of saturating nodes at a given level. Furthermore,
a careful cache implementation based on shared MDD nodes
also implies that firing distinct but equivalent transitions (or
portions of transitions) also results in cache hits. This means
that not only it is impractical to compute variable orders that
optimize SOT or SOS, but also that, even if we were able
to do so, these orders would not necessarily be optimal for
saturation: unfortunately, SOT and SOS are just proxies for
the time and memory requirements of a saturation run.

Since even just finding an optimal order to encode the final
result of saturation is NP-hard, it is not surprising that the
proposed heuristics for saturation are NP-hard and the opti-
mization problems they imply can be only partially addressed
with polynomial-time heuristics, which are in turn sensitive
to the initial variable order. In other words, different “good”



(according to a given heuristic) orders are generally obtained
if we start the search algorithm from different initial orders.
This also holds for polynomial time heuristic algorithms which
rely on randomness or unspecified criteria to break ties in
their calculations. In conclusion, no known algorithm provides
saturation with a clear choice for a variable order.

III. THE SOUPS METRIC

SOT and SOS are reasonable metrics, but fail to reflect that
not all transition spans have the same firing costs. Unlike SOT,
SOS is not concerned with nodes below Bot(t) since no calls
to fire ¢ are issued on them; SOS is thus equivalent to SOT with
a discount applied to the portion of a span below the bottom
variable. We stress that a good SOS order does not always
produce better results than a good SOT order. For example,
a variable order and its reverse have the same SOS score,
but may result in greatly different saturation performance: this
confirms that there is a directional component in the cost of
firing a transition, which SOS ignores but SOT does not.

A. Definition

Our definitions, and our implementation, rely on the notion
of arc-pair. The arcs of a Petri net are described in terms of
two incidence matrices F~ and FT specifying cardinalities of
the arcs that subtract or add tokens, respectively. An arc-pair
Ap + is a tuple containing both cardinalities for a given p € P
and t € T. This allows us to combine the F~ and F matrices
in a way that does not discard information. An arc-pair A, ; =
(0,0) means that there is no arc between place p and transition
t, but it is enough to have A,; = (n,n) for any n € N to
ensure that transition ¢ has no net effect on place p. We arrange
these arc-pairs into sequences Seq(t) for each transition t € T
according to the variable order, where the lowest level starts
the sequence and the highest level ends it. Sequence Seq(t)
contains all arc-pairs for transition ¢, including those that are
(0,0). A prefix of Seq(t) of length Top(t) contains all of the
arc-pairs necessary to calculate the cost of a transition ¢, as it
contains the cardinalities of all arcs connected to ¢. We call this
sequence TopSeq(t), so SOT = ), Length(TopSeq(t)). A
suffix of TopSeq(t) starting with the arc-pair at level Bot(t)
has length equal to the span of transition . If we call this
sequence SpanSeq(t), then SOS = ), _ Length(SpanSeq(t)).

A transition that removes and adds an equal number of
tokens to each place does not result in any new marking: it is
non-productive. This is of course a useless transition, thus it
would not be present in practical nets. However, from the point
of view of the recursive firing operation, a transition where
the lowermost levels are all non-productive is no different
from a transition which is entirely non-productive. The result
returned is the same, and in both cases the corresponding
places remain unchanged. For this reason, we consider these
lower non-productive spans less costly, and discount them
when considering the contribution of ¢. This leads to a new
metric, the sum-of-productive-spans (SOPS). For transition
t, productive substring Prod(t) can be defined as the suf-
fix of TopSeq(t) starting with the first productive arc-pair,

(F, . F},)stF,, #F}, Themetric can then be calculated
as SOPS =, . Length(Prod(t)).

Until now the cost of firing a transition has ignored the
other transitions in the model, treating each one in isolation.
Imagine now a Petri net with multiple transitions having
exactly the same input and output arcs. These transitions affect
the marking in the same way, thus all but one are redun-
dant. Again, no practical model would have such repeated
transitions, yet the definition of SOT and SOS, at least as
originally given, would count the contribution of each of
these identical transitions multiple times, skewing the value
of the metric so that orders that reduce the top or span of
these multiple copies would be preferred, at the expense of
other transitions. Of course, one could check for and eliminate
duplicate transitions by comparing the arc-pair sequences, and
certainly a good MDD-based implementation of the relational
product would automatically result in cache hits when they are
present. However, as above, while multiple transitions with the
exact same effect might rarely be present, it is not uncommon
to have transitions that share portions of their effect on the
marking, and we focus on the case where this happens at the
last few bottom levels, since only in these cases firing cache
hits are possible. Thus, the contribution of these levels to the
metric should be reduced or even ignored. We wish to discount
all occurrences where a cache hit is possible, counting only
those spans where the upper structure of a transition is unique.

This leads to a new metric, the sum-of-unique-spans
(SOUS). SOUS is the number of unique prefixes of TopSeq(t)
for all ¢ such that the prefix contains at least one non-empty
arc-pair. Let LowArc(t) be the lowest non-empty arc-pair for
transition ¢, then

SoUsS = U {s = Prefix(TopSeq(t)) : LowArc(t) € s}
teT

The final combined metric sum-of-unique productive-spans
(SOUPS) considers only those spans that are both unique and
productive. The definition of the SOUPS metric is similar to
that for SOUS, except that it counts unique spans only if they
are also productive. SOUPS is the number of unique prefixes
of TopSeq(t) for all ¢ such that the prefix contains at least one
productive arc-pair. Let Low Prod(t) be the lowest productive
arc-pair for transition ¢, then

SOUPS= U {s=Prefix(TopSeq(t)) : LowProd(t) € s}
teT

Section I'V-B describes an efficient way to compute this metric.

B. Complexity

It is easy to see that finding an order with an optimal
SOUPS (or SOPS, or SOUS) score is NP-hard. Assume we
had a polynomial algorithm to find an optimal SOUPS score.
Then, given any Petri net, we could change it so that all arcs
have different cardinalities. This new net would then have the
same SOS as the original one, but there would be neither non-
productive nor non-unique spans, thus running the hypothetical



polynomial SOUPS algorithm on the new net would give an
optimal order for SOS as well, which is known to be NP-hard.

C. Example

It is important to understand the reasons why SOS and SOT
perform poorly on some models. One such anomaly is the
Eratosthenes Petri net from the MCC competition [2], shown
in Figure 2, where every transition contains one non-productive
arc-pair and one arc removing a single token from a place. If
an order is such that all transitions have the place from which
the token is removed as their top, then the entire portion of
each span below the top is non-productive. It is obvious that
any such order has an optimal SOUPS score, while its SOS
or SOT score would be poor.

We visualize variable orders for Petri nets as in Figure
3. Each grid square represents an arc-pair with output car-
dinalities on the left and input cardinalities on the right, with
the (0,0) pair omitted; black squares indicate the productive
and unique portions of a span, and gray squares indicate
the non-productive or non-unique portion. Figure 3 illustrates
the extreme difference between SOS and SOUPS for the
Eratosthenes model, since the area of the black squares equals
the SOUPS value, while that of the black or gray squares
equals the (much larger) SOS value.

It turns out to be quite easy to generate optimal SOUPS
orders for this model in linear time using a breadth-first search,
and these optimal SOUPS orders indeed result in very good
runtimes, taking a fraction of a second to complete saturation
even for the largest instances of this model. Orders generated
while seeking to improve other metrics do not produce similar
results, and often cannot complete at all. In other words, this
is a model where focusing on the wrong factors is disastrous.

In their survey of graph layout problems, the authors of
[9] enumerated many classes of graphs with polynomial time
algorithms for finding optimal orders under various metrics,
even though the general problem is NP-hard. This is the case
with Eratosthenes and the SOUPS metric, and likely many
others, where finding an optimal SOUPS order via search is far
more difficult. There exist relatively few, usually very small,
cases where we have proved that an optimal SOUPS order is
obtained, and in all of those cases the results have been quite
good. Even though the metrics share similar motivations, a
good SOUPS order can have a very different structure from
those optimized for SOS or SOT. Many algorithms used to
generate orders for use in saturation have been successful,
and often compute good SOUPS orders merely by accident.
These approaches may benefit from modifications that more
purposefully target good SOUPS orders.

IV. EFFICIENT COMPUTATION OF THE SOUPS METRIC

For the SOUPS metric to be useful, it should be efficiently
computable. A naive implementation of any metric could
be wasteful, but the checking for uniqueness as we defined
it could be especially costly. We seek to count only those
spans which are unique among the transitions, which suggests
the need to maintain a set of previously encountered spans.

Fig. 2. Petri net diagram for Eratosthenes-20

P15

P14

P13 --‘
P oo I NN
) ... RN NN AR
IR 8
P W
P . muluululllm

P6
P5
P4
P3
P2
P1

[ i
LR

Fig. 3. An optimal SOUPS order for Eratosthenes-20

Implemented in this way, the memory required to store this set
would grow when an order has many large unique spans, but
this is in fact not necessary, and all the metrics we described
can be calculated with memory requirements in the number
of arcs in the Petri net. In addition to saving memory, time
improvements are important as well, since they allow us to
search more of the vast space of possible orders.

For every transition, we store its non-zero arc-pairs in a bal-
anced binary search tree which maps the level associated with
each place to the corresponding arc-pair. The ordered mapping
provided by the binary tree allows for quickly determining the
lowest and highest connected places, iterating according to the
order, and for quickly updating the structure when modifying
the order. Every lookup, deletion, and update can be done in
logarithmic time, since the height of the tree is logarithmic
with respect to the number of arcs connected to the transition.
Since most transitions are connected to few places, the height
of these trees is very small in practice.

The minimum and maximum entries of each binary tree cor-
respond to the bottom and top for each transition respectively,
making the calculation of SOS and SOT a simple matter of
finding these values from the binary trees created for each
transition. The productive span can be obtained by iterating



over each tree from the minimum to the maximum, obtaining
the lowest level with a productive arc-pair.

A. Updating and searching

We find good orders for our metrics using simulated an-
nealing, which attempts to improve upon some fitness metric
by making slight changes [14]. Simulated annealing avoids the
problem of getting stuck in local minimum by continuing to
pursue changes, even when those changes do not improve
upon their previous value. This approach has been shown to
be among the most effective for similar ordering problems,
especially when the search time is not a concern[16].

To use our metrics in the inner loop of a search heuristic
such as simulated annealing, we want to calculate a new value
for them after a simple change without having to recalculate
the entire score or rebuild data structures. Specifically, we
consider obtaining one order from another by swapping the
locations of two places in the order. These swaps can be
performed on the binary trees for each transition by removing
the entries for the old locations and inserting them in their
new places. This process can be improved by keeping track
of which transitions are connected to each place, so that only
those transitions affected by the swap need to be updated.

We observe that all of the metrics described in this paper
grow monotonically while they are being calculated, thus
we can stop the calculation of a metric when the current
sum exceeds its previous value, allowing particularly bad
updates to be abandoned early and avoiding the expense of
finding the full sum[13]. We use this point of abandonment
as an estimate of the quality of the updated order, rather
than computing the full value and measuring the change.
A very early abandonment indicates an update that should
have a lower probability of being followed further, while an
abandonment that has calculated nearly the entire metric is
more promising. Of course, a full calculation of the metric
without abandonment occurs when an improvement is found,
and these updates are always followed.

B. SOUPS calculation

The uniqueness property must consider multiple transitions,
so it cannot be directly measured from each transition in
isolation, as with the other metrics. Sorting the transitions
can put them in an order such that transitions adjacent in
the order have the lowest possible point of differentiation. At
this level and above a transition is unique compared with all
of its predecessors. Determining unique span requires only
comparison with one other transition if the transitions are in
this sorted order.

The first aspect of the sort is according to the bottom,
since having the same bottom is a necessary condition for
non-uniqueness. Sorting the lowest bottoms first also aids our
early abandonment approach, by considering larger spans first,
which may let us discover sooner that an order has low quality.
Among transitions with the same bottom level, a comparison
between two transitions is based on their lowest differing arc-
pair. Any consistent comparison between differing arc-pairs

leads to the same uniqueness result. Once the transitions are in
this sorted order, the lowest level at which a transition differs
from its predecessor indicates that at this level and above only,
the span is counted as unique, since the equal portion of the
span must have already been counted for an earlier transition.

This sorting of transitions potentially requires comparisons
where each arc in a pair of transitions is considered. As
with the other metrics, swapping a pair of levels may not
affect every transition, and will not always result in a change
to the sorted order of transitions. Taking advantage of this
observation could lead to further speed improvements, as
avoiding sorting the entire collection of transitions after each
update may be faster in practice. We caution against using a
sorting algorithm such a poorly implemented quicksort where
the worst performance occurs when input is nearly sorted, as
this is often the case when sorting after making a small change
to a variable order.

V. RESULTS

To evaluate our heuristic, we implemented a saturation-
based algorithm to generate the state space of a Petri net.
This prototype is freely available[!] so anyone can readily
replicate or extend our results. The tool reads a model in
PNML format [ 1], then derives a variable order that saturation
uses to generate the state space while collecting and reporting
performance measurements.

We compare the SOT, SOS, SOPS, SOUS, and SOUPS
heuristics on models from the Model Checking Competition
(MCC) [2], which provides a diverse collection of Petri nets.
Results from several tools that use some variant of saturation
are available on the MCC website as well. While we do not
directly compare our results with past competitors in the MCC
state-space-generation category, we can state that good SOUPS
orders enabled us to generate the reachability set for instances
not previously completed by any tool in competition. This
suggests that saturation using good SOUPS orders would be
a highly competitive entry in MCC.

For each model, we run a simulated annealing search to
find good SOT, SOS, SOPS, SOUS, or SOUPS orders starting
from 100 random orders. This provides us with up to 500
distinct orders per model (it may be fewer than 500, since the
sets of orders derived for the individual metrics may not be
disjoint, this is more likely to happen for models with few
variables, where the total number of orders is itself not that
large, or when the heuristics agree on what orders are good: for
example, SOS, SOPS, SOUS, an SOUPS agree on the score
when all transitions are fully productive and unique).

Since we run the simulated annealing search for 50,000
iterations, we calculate each metric this many times, producing
one order to use with saturation. This means that we have
explored as many as 5 x 100 x 50,000 = 25 million orders
for each model, but even this is often only a tiny fraction of
the possible orders. To ensure reliable and insightful results,
we focus on model instances where we are able to complete
saturation using these orders and provide measurements we
can analyze. We wish to study the effectiveness of our metrics,



SOUPS in particular, and focusing on a large but manageable
set of reasonably good orders narrows the search space signif-
icantly, while providing more insight than even a much larger
set of randomly generated orders would.

A. Evaluation criteria

The performance of saturation can be best measured using
runtime and memory usage, but these quantities often do
not provide fine-grained information about where the algo-
rithm consumes resources. Runtimes can be very small, often
fractions of a second, in which case they fail to illustrate
meaningful information which can only be pinpointed by
counting individual operations. Of course, they are also highly
dependent on the quality of the implementation, and the hard-
ware environment can introduce unpredictable variance. Our
prototype implementation of saturation collects counts of every
major operation, including the number of nodes and edges
created, allowing confirmation that these counts are strongly
correlated with runtime for larger more time-consuming mod-
els, while having the advantage of being largely independent
of the specific implementation and hardware environment.

We restrict our analysis to the count of nodes created during
execution. This measurement provides a single value to be
used as a proxy for overall computation cost, as each call to
the saturate, relational product, and union operations creates
and checks a node into the unique table.

SOUPS takes advantage of the circumstances reducing the
number of required uncached calls to the fire operation, and
this is clearly apparent in our experiments, since cache hits
do not result in a new node being checked in. Observing this
count of created nodes allows us to confirm that performance
improvements appear as a consequence of reducing specific
operations. The cost savings from non-productive firings is
estimated by counting the number of times a union returns one
of its arguments as a result, indicating that firing created new
sets but not additional states. Unions with this property occur
while executing any order, but are more prevalent when non-
productive regions are fired. As a whole, the collected data
supports our claim that better values for the SOUPS metric
result in reduced computation costs.

B. Experimental results

Figures 4, 5, 6, 7, and 8 show ‘“normalized score” vs.
“normalized node count” scatter plots for SOT, SOS, SOPS,
SOUS, and SOUPS, respectively. For example, the SOT plot
is obtained as follows. For each model X, define the highest
(worst) SOT score $(X )maqz and the highest (worst) number of
nodes created 1(X );q. When running saturation using the (up
to) 500 orders for that model; then, define a normalized data
point “s(X)/$(X)mazs 7(X)x/1(X)maz", where $(X)x
and n(X), are the score of order 7 and the number of nodes
created by saturation using order 7 on model X; the plot shows
all the data points for all different orders of all models.

This normalization allows us to compare the five heuristics
across different models, even if they may have very different
node requirements. We stress that, while we maintain fairness

y=0.1038x + 0.169
R=0.0475

0.9

0.8

0.7

0.6

BIPTT-RUC 7 DRI A

0.5
0.4
0.3
0.2

0.1

0 0.2 0.4 0.6 0.8 1
Fig. 4. Normalized SOT score (x) vs. node count (y).

by generating an equal number of orders deemed good by each
of the five heuristics, each of these heuristics provides a score
for any order, regardless of whether that order is deemed good
or not by that heuristic. This seems an appropriate approach
to pit the five heuristics against each other.

The plots show the correlation coefficient R, between the
heuristic assessment of an order and its actual goodness in
terms of created nodes.

o For SOT, the correlation is negligible. Particularly prob-
lematic is the large number of data points in the upper
left corner, indicating orders that are deemed good but
instead perform poorly. The plot also shows vertical
clusters indicating the metric sometimes provides little
to no information predicting node count.

o For SOS, the correlation is much better, the regression
line clearly showing that higher scores fend fo result
in worse performance. However, the spread of the data
points is still large and the correlation is weak (where 1.0
would be a perfect correlation).

e For SOPS, SOUS, and SOUPS, the situation is substan-
tially better, with data points indicating a much clearer
correlation. Particularly noticeable are the two clusters of
data points on the lower left portions of the SOUS and
SOUPS plots, suggesting that improving the score of an
already good order tends to further improve performance.
Of these three new heuristics, SOUPS is clearly the one
with the best correlation, R = 0.51457.

A different way to approach a comparison between the
five metrics is to consider how we would go about tackling
a particular model. In practice, we could not afford nor we
would be interested in generating 100 orders deemed good
according to SOT, SOS, SOPS, SOUS, and SOUPS and then
run saturation up to 500 times. Rather, we would have to
choose one of these five heuristics, spend a reasonable amount
of time to generate an order with a good score according to it,



y =0.4176x - 0.0233
R=0.2798

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 :
0 0.2 0.4 0.6 0.8 1

Fig. 5. Normalized SOS score (x) vs. node count (y).

y =.4887x - 0.0604
R=0.3329

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1
Fig. 6. Normalized SOPS score (x) vs. node count (y).

and then run saturation once on the model. Multiple saturation
runs using different orders would be required only if we keep
being unable to complete the computation, and try a different
order hoping that it will lead to a successful run.

Table I shows the same data used for the scatter plots,
but organized differently. For each model we considered (the
names are those from MCC, sometimes abbreviated to save
space), we list the total number “Ord” of distinct orders, then,
for each heuristic, we list, the correlation coefficient “R”, the
minimum number of nodes created “Min”, the average number
of nodes created “Avg”, and the maximum number of nodes
created “Max”, computed only over the order or orders with
the best score among all of those generated using simulated
annealing, together with the number of such orders “Tie” (the

y = 0.6919x - 0.2306 L.

R =0.4451 ER
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0 0.2 0.4 0.6 0.8 1
Fig. 7. Normalized SOUS score (x) vs. node count (y).

y =0.7788x - 0.2836
R =0.51457

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 — = : =
0 0.2 04 0.6 0.8 1

Fig. 8. Normalized SOUPS score (x) vs. node count (y).

models are listed in decreasing order of “Avg” for SOUPS).
This reflects what we would do in practice: we would choose
one of the heuristics, say SOUPS, then run every ordering
technique at our disposal, resulting in a set of orders, hopefully
with good SOUPS scores. If only one of these orders has the
minimum SOUPS score, then we run saturation using it; if,
however, “Tie” orders have the lowest score, then we would
randomly choose one of them and run saturation with it, in
which case our performance may be as good as “Min” or as
bad as “Max”, depending on how lucky we are, and it will be
“Avg” on average.

Then, two useful comparisons can be made. First, when
multiple orders tie for the lowest score according to a par-
ticular heuristic, the smaller the spread between “Min” and



“Max” is, the less dependent on luck we will be. Second,
and more importantly, we can compare the “Min” (if we feel
optimistic), “Max” (if we feel pessimistic), or “Avg” (maybe
more realistically) values for SOT, SOS, SOPS, SOUS, and
SOUPS, to determine which heuristic we might want to pick
before tackling a model of which we know nothing about.
Here, again, the choice is very clear. While there are a few
models where SOT is better than SOUPS by a small factor
(e.g., Circadian Clock), SOUPS is much better than SOT in
the large majority of cases, often by a factor of 10 or more. The
comparison between SOS and SOUPS also favors the latter,
although not in as many models and not by as large factor,
which is however not surprising, since SOUPS is essentially
meant to be a refinement and an improvement over SOS.

In practice, we can conclude that SOUPS is our heuristic
of choice if we have no other information about the model,
although it is clearly not perfect, suggesting that there must be
further factors influencing performance. In practice our search
would likely include running every one of the polynomial
algorithms at our disposal, and extensive experimentation on
the best parameters for simulated annealing, with the hope
that this approach would more often give the best result. As
it stands, our basic implementation of simulated annealing
sometimes finds the best order for a given metric while
optimizing one of the others. Ideally the search should be
capable of being run once, getting a consistent and usable
result without a human manipulating parameters.

VI. CONCLUSIONS

We introduced SOUPS, a metric that can be effectively used
to choose between variable orders prior to running saturation.
As it is common practice to use one or more polynomial
algorithms to generate several orders, SOUPS can be used
to detect situations where one of these algorithms produces
exceptionally good or bad results. As a general strategy, we
suggest that the order with the best SOUPS score should be
the first one tried on a new model when using saturation.

SOUPS relies on the variable span as an estimate of the
cost of firing a transition, but it discounts those portions of the
span where we know saturation will not spend much effort.
While easy to obtain, the entire variable span of a transition
is a rather crude estimate of its impact on performance, while
the improvement from taking into account the uniqueness and
productivity aspect of a transition is significant, and should be
considered a part of any future work on variable ordering.

Many polynomial-time algorithms used to produce orders
have in the past targeted graph layout problems and matrix
bandwidth minimization. However, saturation and in gen-
eral decision diagram algorithms have specific characteristics
specifically related to the use of computation caches and
with no analogue found in those problems. For example, the
FORCE and ACCEL algorithms loosely translate graphs and
edges into “forces”, but our results would then suggest that
modifying these algorithms to somehow consider productivity
and uniqueness will be useful, implying the counterintuitive

notion that applying “the same force” multiple times does not
make it stronger.

Finally, we conclude with two observations. First, the Petri
net formalism provides a well-understood basis for SOUPS,
but in no way limits its applicability; the same uniqueness
and productivity factors are present in other formalisms and
should be utilized whenever possible. Second, our observations
about the behavior of saturation led us to the SOUPS metric,
but insights can be expected in the other direction as well;
specifically, saturation allows for various choices during its
execution, and observations of model structure, as is done with
SOUPS, can further inform these choices to extract further
efficiency.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grant ACI-1642397.

REFERENCES
[1

Code and data from the paper “SOUPS: a variable ordering metric for

the saturation algorithm”. https://github.com/CycloneMCS/SOUPS.

[2] MCC : Model Checking Competition @ Petri Nets. https://mcc.lip6.1r.

[3] F. A. Aloul, I. L. Markov, and K. A. Sakallah. FORCE: a fast and easy-
to-implement variable-ordering heuristic. In Proceedings of the 13th
ACM Great Lakes symposium on VLSI, pages 116-119. ACM, 2003.

[4] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs
is NP-complete. [EEE Trans. Comp., 45(9):993-1002, Sept. 1996.

[5] G. Ciardo, G. Liittgen, and R. Siminiceanu. Saturation: An efficient
iteration strategy for symbolic state space generation. In Proc. TACAS,
LNCS 2031, pages 328-342. Springer, 2001.

[6] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound.
In Proc. TACAS, LNCS 2619, pages 379-393. Springer, 2003.

[7]1 G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis
using conjunctive and disjunctive partitioning. In Proc. CHARME,
LNCS 3725, pages 146-161. Springer, 2005.

[8] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the 1969 24th national conference, pages
157-172. ACM, 1969.

[9] J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems.
ACM Computing Surveys (CSUR), 34(3):313-356, 2002.

[10] C. J. Fisk, D. L. Caskey, and L. E. West. ACCEL: automated circuit
card etching layout. Proceedings of the IEEE, 55(11):1971-1982, 1967.

[11] International Organization for Standardization. Petri Net Markup Lan-
guage (PNML). ISO/IEC 15909-1:2004.

[12] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. Multi-
valued decision diagrams: theory and applications. Multiple-Valued
Logic, 4(1-2):9-62, 1998.

[13] E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos. LB_Keogh sup-
ports exact indexing of shapes under rotation invariance with arbitrary
representations and distance measures. In Proceedings of the 32nd VLDB
Conference, pages 882—-893. VLDB Endowment, 2006.

[14] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by
simulated annealing. Science, 220(4598):671-680, 1983.

[15] A. Noack. A ZBDD package for efficient model checking of Petri nets.
Forschungsbericht, Branderburgische Technische Uinversitdt Cottbus,
1999.

[16] J. Petit. Experiments on the minimum linear arrangement problem.
Journal of Experimental Algorithmics (JEA), 8:2-3, 2003.

[17] J. Petit. Addenda to the survey of layout problems. Bulletin of EATCS,
3(105), 2013.

[18] R. Siminiceanu and G. Ciardo. New metrics for static variable ordering
in decision diagrams. In Proc. TACAS, LNCS 3920, pages 90-104.
Springer, 2006.

[19] S. Sloan. An algorithm for profile and wavefront reduction of sparse

matrices. International Journal for Numerical Methods in Engineering,

23(2):239-251, 1986.



BEST, AVERAGE, AND WORST RESULTS WHEN CHOOSING SOT, SOS, SOPS, SOUS, or SOUPS.

Model Ord SOT SOS SOPS SOouUs SOUPS

R | Min | Avg | Max |Tie|| R | Min | Avg | Max [Tie|| R | Min | Avg | Max |Tie|| R | Min | Avg | Max |Tie|| R | Min | Avg | Max |Tie
sg-2-1-2 222(| 0.27|127228|127228|127228|  1|| 0.59|147585|47585(47585| 1|| 0.59|47585[47585(47585| 1|| 0.55|62257|62257|62257| 1|| 0.55(62257|62257|62257| 1
afcs 1 b 500(| 0.14| 26779| 30174| 33569| 2|| 0.40|24550|24550(24550| 1|| 0.40|24550(24550(24550| 1|| 0.43|24550|24550|24550| 1|| 0.43|24550|24550|24550| 1
open system 0 462(| 0.27| 78634| 78634| 78634| 1|| 0.52(21044(21044|21044| 1]| 0.48[35711|35711|35711| 1{| 0.64|23140|23140|23140| 1|| 0.55[23140|23140[23140( 1
ClientServ-2-0 500[| 0.54| 9309 9309 9309 1{| 0.66| 6287|20943|47719(166| 0.66| 6287|20943{47719|166|| 0.66| 6287|20943(47719|166|| 0.66| 628720943|47719(166|
tcp5 500(| 0.22| 41337| 44950 48563| 2|| 0.64|20908(37950(149379| 5|| 0.64[20908(37950(49379| 5|| 0.77|19757|20586|21414| 2|| 0.77|19757|20586|21414| 2
SwimmingPool-2  [405|[-0.15| 7307| 15499| 23984/ 53|| 0.18| 4694|16734(48946(265|| 0.18| 4694|16734|48946|265|| 0.18| 4694(16734(48946|265|| 0.18| 4694|16734|48946(265
SafeBus-3 500(| 0.33| 12653| 14107| 16802| 3|| 0.50/20091|20091[20091| 1(| 0.52{16196{16196{16196| 1|| 0.09|18082|18082(18082| 1|| 0.22(13393|13393|13393| 1
ring 450[| 0.15| 40205| 40205| 40205| 1{| 0.37| 7552| 7552| 7552| 1| 0.56|25985|25985|25985| 1|| 0.51(27285|27285(27285| 1|| 0.61{11594(11594(11594| 1
Peterson-2 500(|-0.75| 74425| 74425| 74425 1||-0.15|24906|24906(24906| 1(| 0.38|26941(26941(26941| 1|| 0.49|31181|31181|31181| 1|| 0.68| 8290| 8290| 8290| 1
des 01 a 500(| 0.15] 8903 8903| 8903| 1||0.49/10343|10343(10343| 1|| 0.49|10343(10343[10343| 1|| 0.55| 8173| 8173| 8173| 1|| 0.55| 8173| 8173| 8173| 1
trg 1-20-0 500(|-0.45| 33884| 68379|104726| 44|| 0.58| 2416|13227|38059| 43|| 0.58| 2416(13227(38059| 43|| 0.74| 1691| 7502|13328| 76|| 0.74| 1691| 7502|13328| 76
closed sysl 489]1 0.17| 9861 9861 9861 1(| 0.57| 6224| 6224| 6224| 1|| 0.54| 6224| 6224| 6224| 1|| 0.65| 5801| 5801| 5801| 1(| 0.61| 5801| 5801| 5801| 1
IBM703 500[| 0.63] 4905 4905| 4905 1{| 0.24| 5794| 5794| 5794| 1|| 0.24| 5794| 5794| 5794| 1|]| 0.17| 5794| 5794| 5794 1|| 0.17| 5794| 5794| 5794| 1
2-10 phaseVar 491|] 0.09| 2807| 3530| 6297 98|| 0.13| 3131| 3874| 5151| 94{|-0.57| 4917| 6772|12171| 74{| 0.62| 2878| 3616| 6573[170(| 0.59| 2878| 3616| 6573|170
IBM5964 500(|-0.68| 15450| 15450| 15450 1|| 0.78| 3453| 3453| 3453| 1(| 0.78| 3453| 3453| 3453| 1|| 0.80| 3583| 3583| 3583| 1||0.80| 3583| 3583| 3583| 1
BrVeh-V4-P5-N2  |500|| 0.54| 3382| 3704 4103| 7|| 0.39| 2612| 2692| 2771| 2|| 0.44| 4404| 5857| 7873| 6||-0.34| 4793| 4990( 5102| 4{|-0.28| 2949| 3229| 3539| 3
2D8 grad 10x10 10 [438|| 0.77| 3207| 3207| 3207| 1{| 0.21| 3157 3157| 3157 1||0.21| 3157| 3157| 3157| 1|| 0.06| 3143| 3143| 3143| 1{| 0.06| 3143| 3143| 3143| 1
hxg 110 500(|-0.69| 25380| 38162| 53124| 74|| 0.44| 3163| 4842| 6355| 9|| 0.44| 3163| 4842| 6355 9|| 0.89| 2677 2677| 2677| 1|| 0.89| 2677| 2677| 2677| 1
neoelection-2 278(|-0.66| 2621 2621| 2621 1||-0.28| 2688| 2688| 2688| 1(|-0.28| 2688| 2688| 2688| 1|| 0.66| 1892 1892 1892 1|| 0.68| 1946| 1946| 1946| 1
QCertifProtocol 2 |500|[-0.23| 5118 5118 S5118| 1{| 0.27| 3573| 3651| 3729| 2||0.27| 3573| 3651| 3729 2(| 0.82| 1941| 1941| 1941| 1{| 0.82| 1941| 1941| 1941| 1
dekker-10 485(| 0.80| 4544 5204 5961| 68| 0.76| 1857| 1924| 1997| 7|| 0.80| 1441| 1521| 1600 2|[-0.10 2189| 2189| 2189 1(|-0.01| 1905| 1905| 1905| 1
HouseConst-5 500(| 0.20] 2246 2724| 3251 5|| 0.68| 1806/ 1806/ 1806| 1[| 0.68| 1806 1806| 1806/ 1|| 0.68| 1806| 1806| 1806 1|| 0.68| 1806| 1806| 1806/ 1
dnawalk-02 488|[-0.60 4441| 7767| 11755|100(| 0.63| 1571| 2069| 2654| 47|| 0.63| 1571| 2069| 2654| 47|| 0.90| 1479| 1652| 1757| 68|| 0.90| 1479 1652| 1757| 68
lamport fmea-2 500(| 0.32| 1634 1634| 1634 1{| 0.44| 1271 1271| 1271 1|| 0.59| 1612| 1612| 1612| 1|| 0.39| 1993 1993| 1993| 1|| 0.49| 1612| 1612| 1612| 1
ht d2k1p8b00 480[|-0.19| 1880 2186( 2486| 67(| 0.17| 2309| 2341| 2372|137|| 0.17| 2309| 2341| 2372|137|| 0.28| 1271 1539| 2306| 74|| 0.28| 1271| 1539| 2306| 74
deploy 2 a 476||-0.34| 12677| 12677| 12677| 1{|-0.17| 2609| 2609| 2609| 1|| 0.15| 1727 1727 1727 1|| 0.46| 3329| 3329| 3329 1|| 0.74| 1462| 1462| 1462| 1
G-PPP-1-1 500(| 0.29| 1970/ 1970| 1970 1||0.36| 1216| 1216| 1216| 1(| 0.36| 1216| 1216| 1216 1|| 0.38| 1216 1216| 1216 1||0.38| 1216| 1216| 1216/ 1
philo dyn-3 500(|-0.35| 2471 2853| 3310[ 78|| 0.40| 1153| 1217| 1282| 10|| 0.33| 1093| 1121| 1157| 3|| 0.49| 1602| 1658| 1711 6|| 0.67| 1016| 1021| 1025 2
cs repetitions-2 500(| 0.71] 905 938 971| 2||0.13| 1622| 1671| 1700] 9||-0.15| 1499| 1656| 2489| 13|| 0.72| 898| 953| 1032| 19|| 0.40| 785 993| 1207| 53
railroad5 500(|-0.56| 3871 3871| 3871 1||-0.00| 2094| 2094| 2094| 1(| 0.33| 1505| 1505| 1505 1{| 0.83] 918 918| 918 1|/ 0.85 918 918 918 1
parking 1 4 500(| 0.46] 720/ 720 720 1||-0.06| 1137| 1137| 1137| 1{|0.19] 662| 662| 662 1[|-0.10] 1146| 1146| 1146 1| 0.27| 844| 844| 844| 1
TokenRing-5 500(| 0.48] 888 925 969| 22|| 0.68| 744| 831| 956| 48|| 0.57| 758 795| 852| 45|| 0.54| 749| 771| 794 3||0.54| 758| 795 852 45
simple 1bs-2 500(|-0.64| 2559 2647| 2802| 12|| 0.40| 684 684 684 1(|0.44| 756 760 763 2||0.77) 683| 683| 683 1|(0.81| 712 712 712| 1
AirplaneLD-10 500({-0.37| 3112 3112| 3112 1|[-0.03| 2659| 2659| 2659| 1(| 0.24| 788 788 788| 1||0.01| 1340| 1340 1340| 1|[0.65| 693| 693 693| 1
SmallOS-MT32DC8(333|( 0.49| 411 823| 1536(102(( 0.01| 1559| 2564| 3170|124|| 0.01| 1559| 2564| 3170|124{| 0.63| 411| 615 825| 55| 0.63| 411| 615 825| 55
MAPK-8 493(| 0.14|  850] 1037| 1386| 3|| 0.57| 502| 606 901| 18||0.57| 502 606 901| 18]| 0.67| 489 498| 503| 19(| 0.67| 489| 498| 503| 19
raft 02 500(|-0.29| 1234| 1234| 1234| 1|| 045 733 733 733| 1{|0.13] 626 626 626 1||0.69] 448 448| 448 1||0.65| 473| 473| 473| 1
erk-000010 338(| 0.46| 212| 529| 1355[147|| 0.79| 212| 470 760|113||0.79| 212 470/ 760(113|| 0.82| 212| 470| 760[113||0.82| 212| 470| 760|113
dlcro 03 a 403[|-0.04| 8576| 8576 8576| 1(| 0.04| 587| 587| 587| 1||0.36| 444| 444 444 1|[0.17| 857 857 857| 1||0.27| 454| 454 454 1
Kanban-5 500(|-0.40| 475 3223| 9178| 98|| 0.84| 149| 400 617| 9||0.84| 149 400| 617 9||0.85| 149| 424 588 8||0.85| 149| 424| 588 8
FMS-5 500(|-0.02|  661| 870| 1101 3|/ 0.59| 391| 446 499| 6||0.62| 432 433| 433| 3||0.62| 352| 416| 433| 5||0.65 352| 416| 433| 5
circadian clock-10 483 0.86 138 142|  146| 16| 0.08| 130[ 696| 1202| 55|| 0.05| 398 402| 407| 15|/ 0.26| 714| 860| 992| 27|| 0.37| 287 379 407| 19
angiogenesis-01 500(| 0.46| 386 386 386 1|/0.09] 618 618 618 1[|0.09] 618 618 618 1||0.21| 376| 376| 376 1||0.21| 376 376 376/ 1
Philosophers-10 500(| 0.32| 401|401 401 1)|0.75| 373| 426 494 69(| 0.75| 373| 426 494| 69|| 0.79] 363| 371| 374| 15/ 0.79| 363| 371| 374| 15
shared mem-5 500[[-0.06] 487 487 487 1{| 0.11| 432 455 490 8| 0.13| 425| 437| 447 5||0.72| 352| 352| 352 1||0.75| 353] 357| 360| 2|
CircularTrain-12 500(| 0.48] 326 366 414] 37|| 0.98| 290 320| 350(360(| 0.98] 290| 320{ 350[360(| 0.98| 290| 320[ 350|360 0.98| 290| 320{ 350(360!
flexbar 04 a 500(| 0.13]  803| 803| 803 1||-0.53| 1740| 1740| 1740| 1(| 0.55| 307| 307| 307 1||0.76| 342| 342| 342| 1|/0.80| 307| 307| 307 1
z2d3nImc 12 [481]]0.83 192| 203  211{178|-0.63| 211| 228| 252|188(|-0.63| 211| 228 252(188|| 0.33| 192| 209| 220|236(| 0.33| 192| 209 220[236
rwmutex-rl0w10  |500| | 0.73 189 196|  209| 40((-0.55| 624 624 624| 1[|-0.55| 624 624 624 1|/0.84| 189 191 191| 6| 0.84] 189 191| 191| 6
database2 500(| 0.54| 185 185 185 1{| 0.84/ 169| 170| 171 3||0.84| 169 170/ 171| 3||0.85 173| 173| 173| 1{|0.85 173| 173| 173| 1
robot-manip- 1 499(| 0.08| 135|157 184| 19(| 0.74| 132 151 176|158|| 0.74| 132| 151| 176[158||0.76| 132| 151| 176|158(| 0.76] 132 151 176{158
ljoinFree-3 466/ |-0.11 151 155 159| 15[| 0.91| 128 134 139] 40| 0.95| 118| 134| 154{279(| 0.90] 129 130 131| 29|| 0.94| 120] 123| 124| 22|
referendum-10 500({-0.20 98 99|  100[ 46|| 0.80] 98| 99| 99|162|| 0.80] 98| 99|  99|162[| 0.94] 98 99|  99[296|| 0.94| 98] 99|  99|296
distributeur-1-2 500(| 0.50 81 83 85/ 2|/0.17) 89| 89| 89| 2[|0.17| 8 89 89 2[|-0.15| 71| 75 79| 2|]-0.15 71| 75| 79| 2
eratosthenes-20 500 |-0.47 58 67 76| 23|-0.71| 75| 99| 133| 17||0.92| 41| 45| 47|200|[-0.51 52| 57| 59 3||0.93] 41| 45 47|200

TABLE 1



